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Abstract

Background and Purpose—The STroke Imaging Research (STIR) group, the Imaging 

Working Group of StrokeNet, the American Society of Neuroradiology and the Foundation of the 

American Society of Neuroradiology sponsored an imaging session and workshop during the 

Stroke Treatment Academy Industry Roundtable (STAIR) IX on October 5–6, 2015 in 

Washington, D.C. The purpose of this roadmap was to focus on the role of imaging in future 

research and clinical trials.

Methods—This forum brought together stroke neurologists, neuroradiologists, neuroimaging 

research scientists, members of the National Institute of Neurological Disorders and Stroke 

(NINDS), industry representatives, and members of the U.S. Food and Drug Administration 

(FDA) to discuss stroke imaging research priorities in the light of an unprecedented series of 

positive acute stroke endovascular therapy clinical trials.

Results—The imaging session summarized and compared the imaging components of the recent 

positive endovascular trials, and proposed opportunities for pooled analyses. The imaging 

workshop developed consensus recommendations for optimal imaging methods for the acquisition 

and analysis of core, mismatch and collaterals across multiple modalities, and also a standardized 

approach for measuring the final infarct volume in prospective clinical trials.

Conclusions—Recent positive acute stroke endovascular clinical trials have demonstrated the 

added value of neurovascular imaging. The optimal imaging profile for endovascular treatment 

includes large vessel occlusion, smaller core, good collaterals and large penumbra. However, 

equivalent definitions for the imaging profile parameters across modalities are needed, and a 

standardization effort is warranted, potentially leveraging the pooled data resulting from the recent 

positive endovascular trials.

Keywords

imaging; image-guided intervention; reperfusion; clinical trial; outcome Subject codes; Ischemic 
Stroke; Computerized Tomography (CT); Imaging; Magnetic Resonance Imaging (MRI); 
Treatment

Introduction

Over the prior two decades, an accumulated body of evidence from the stroke research 

community has led to incremental advances in the standardization of clinical trial 

methodologies and to the emergence of a central role for imaging in new treatment 

evaluations. The recent series of positive endovascular trials owe much of their success to 

the lessons learned from the many prior trials that failed to establish therapeutic efficacy.1–5 

These prior stroke trials have led to an understanding of the roles of vascular, core, 

penumbral, and collateral imaging and their relationships to treatment response and clinical 

outcome. The goal of this article is to report on neuroimaging biomarkers for treatment 

selection and for outcome.

It is beyond question that time from onset of focal cerebral ischemia to reperfusion is 

fundamental in determining therapeutic efficacy for reperfusion therapies.6 The effect of 
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early treatment of stroke with intravenous alteplase demonstrated in the hallmark NINDS 

trial7 illustrates this principle; a robust and reliable benefit compared to placebo is related to 

time from onset to treatment.8

However, when time and brain imaging by standard non-contrast CT (NCCT) imaging are 

insufficient to accurately test a therapeutic hypothesis, selection based on imaging of a 

biological target for treatment is a logical alternative (Table 1). Examples may be clinical 

trials in which the anticipated effect size is small (e.g., comparing two thrombolytic 

medications or testing of a neuroprotective drug) or in which the treatment is relevant only 

for a subset of stroke types (e.g., large vessel occlusion). The STIR consortium has 

recommended the term TRAIT (Treatment-Related Acute Imaging Target) to describe 

patient selection based upon the biologic target of a treatment. The responses of these 

biologic targets to treatment may depend on time.9 The series of positive endovascular trials 

confirmed the value of TRAIT selection and enrichment for endovascular reperfusion 

strategies (Table 1). The trials demonstrated that patient recruitment limited to an imaging 

defined subset of stroke led to positive trials with smaller samples completed within 

reasonable periods of time. EXTEND IA illustrates how a greater enrichment results into a 

smaller sample and greater effect size, but potentially also decreased generalizability and 

excluded patients who may have benefited from treatment.

Imaging Selection in Recent Positive Acute Stroke Endovascular Clinical 

Trials

After three neutral endovascular trials in 2013 (IMS III, MR RESCUE and 

SYNTHESIS)10–13, the years 2014–2015 were marked by a historic series of positive acute 

stroke clinical trials (Table 2). The use of advanced imaging-based selection for patient 

recruitment in these recent trials is one of the most important factors in the success of these 

trials (Table 3). The imaging modalities required for each trial were different (Table 4). 

There is no evidence that the different imaging modalities resulted in different times from 

symptom onset to treatment (Table 5).

In the MR CLEAN trial1, the key imaging findings included a clear benefit of endovascular 

therapy for NCCT ASPECTS scores of 5–10, but less certainty for ASPECTS score of 0–4. 

A post-hoc analysis demonstrated that a good and moderate collateral score was also 

associated with a large benefit of endovascular therapy. On the other hand, while Perfusion 

CT (PCT) mismatch (CBV and MTT thresholds) predicted functional outcome, the relative 

treatment effect in patients with and without mismatch was similar. The use of an ischemic 

core volume >70mL on PCT criterion did identify a group of patients with very low rates of 

independent outcome (1/13 (8%) endovascular treated patients achieved mRS 0–2) but there 

were relatively few patients and the interaction test was not significant.14

The EXTEND IA trial2 showed a robust effect of endovascular therapy over alteplase alone 

in patients with PCT-defined mismatch and core volume <70mL. In this group of patients, 

near complete reperfusion (>90%) in target mismatch patients was strongly tied to favorable 

clinical outcome (regardless of the treatment strategy) and lack of reperfusion was 

associated with death or dependence in 70% of patients.
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In the ESCAPE trial3, an imaging strategy of NCCT ASPECTS scores of 6–10, as well as 

good and moderate collateral scores on CT Angiography (CTA), showed a robust effect 

favoring endovascular therapy. ASPECTS and collateral scores were highly correlated. 

Patients with higher clot burden assessed using the clot burden score demonstrated more 

treatment effect.

In the SWIFT PRIME trial4, a target mismatch based on perfusion imaging combined with 

successful recanalization was associated with a favorable outcome. Final infarct volume 

strongly correlated with clinical outcome in both treatment groups.15 Baseline ischemic core 

volume predicted 27-hour infarct volume in patients who reperfused.16 In target mismatch 

patients, the combination of baseline core and 27-hour hypoperfusion volume predicted final 

infarct volume.

The REVASCAT trial5 supported NCCT-based patient selection, only requiring ASPECTS 

of 6 or greater, demonstrating a robust treatment effect. However, significant discrepancies 

were observed between the centralized core lab ASPECTS and the investigators’ ASPECTS, 

and some benefit with lower ASPECTS scores (0–4) cannot be excluded. A pooled analysis 

of all patients with ASPECTS 0–4 across all endovascular trials is needed, but may be too 

small to draw reliable conclusions regarding endovascular treatment effects. Interestingly, 

there were also significant discrepancies between M1 versus M2 occlusions between the 

core lab and the investigators. It is important to note that, if the inclusion criteria were 

expanded to fully embrace the actual recruited subjects (e.g. lower ASPECTS to 3–10 range) 

that a similar cohort would be enrolled and still show benefit.

THERAPY (ClinicalTrials.gov Identifier: NCT01429350), which required hyperdense clot 

length measurement ≥8mm on NCCT for trial inclusion, suggested that the benefit of 

bridging endovascular therapy relative to IV thrombolysis alone increased with hyperdense 

clot length, and large infarcts as measured by final NCCT ASPECTS 0–4 to be associated 

with very poor outcome providing further support for this threshold as a useful treatment 

exclusion criterion.

The THRACE study (ClinicalTrials.gov Identifier: NCT01062698) has not been published to 

date. This study required demonstration of an arterial occlusion but similar to MR CLEAN, 

did not utilize NCCT or other criteria to exclude patients with a large ischemic core.

Opportunities for Standardization

While the above listed stroke clinical trials had several elements in common (occlusion 

location, ischemic core size), they also had significant differences, which represents a unique 

opportunity for standardization. More specifically, the scoring systems used to characterize 

ischemic core and collateral circulation varied from trial to trial. The pooling of the imaging 

data from these trials offers great opportunities to refine the imaging selection of patients for 

acute reperfusion therapy and trials (last column in Table 4). A statistical analysis plan for 

the pooled analysis of all the endovascular trials have been published17, which will focus on 

ASPECTS, M1 versus other arterial occlusion sites, and good/moderate versus poor 

collaterals. The optimal set of imaging biomarkers to select acute stroke patients may vary 
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depending on the revascularization therapy being considered, the population being studied, 

and the time window under investigation, in agreement with the concept of TRAITs defined 

in STIR Roadmap II18. Imaging remains essential for phase II trials, and more than one 

imaging method is probably acceptable for patient selection purposes, as long as reasonable 

cross-modality concordance and within modality standardization and reliability are 

achieved. The STAIR/STIR imaging workshop recommends imaging based selection for 

acute stroke reperfusion clinical trials (not limited to endovascular therapies) as outlined in 

Table 1.

The specific imaging methods proposed for patient selection using each TRAIT are outlined 

in Table 1. Table 1 contains the acceptable options for patient selection in clinical trials and 

are not listed in any order of priority.

Exclusion of patients with large ischemic core was a feature of most of the recent positive 

acute stroke clinical trials. Since the interaction of treatment with this imaging variable 

cannot be determined reliably due to the very small numbers of subjects across all trials, 

neither safety nor efficacy of reperfusion therapies in this group is established. Future 

studies investigating the sensitivity and specificity of each method/modality used to define 

ischemic core is essential.16,19 Furthermore, studies investigating the relationship between 

the ischemic core volume and collaterals20 should be pursued. The definitions of ischemic 

core will need to be revisited in populations of patients with ultra-fast reperfusion. The 

geographic distribution of the ischemic core may need to be considered in addition to its 

volume to reflect the eloquence of the infarcted region. Finally, future studies will need to 

determine whether treatment of patients with larger ischemic cores is associated with higher 

rates of symptomatic intracranial hemorrhage when treated. The research priorities for core 

and the other TRAITs are outlined in Table 6.

Standardization of the grading of collateral circulation on and between CT and MRI are 

needed. The importance of collateral circulation must also be more robustly validated in 

prospective acute ischemic stroke. Future studies comparing single-phase and multiphase 

CTA21 for this purpose, are warranted, considering that a dichotomous definition of 

collaterals (absent/poor versus good/moderate) is probably sufficient.

Perfusion derived entities, such as the core and penumbra, are the imaging biomarkers that 

will require the largest effort in terms of standardization considering the number of existing 

definitions and the differences between imaging modalities. Core is defined generally as the 

irreversible ischemic area that is injured beyond therapy benefit. Penumbra is defined 

generally as the at risk hypoperfused area surrounding the core that is the target for therapy 

to be salvaged. There are now data sets available to benchmark and compare processing of 

acute PCT against a concurrent DWI scan.19 Also, much of the previous work to define 

optimal thresholding did not involve patients with ultra early reperfusion, and repeat work 

should be undertaken using the imaging data collected in these patients.

These efforts to refine and standardize imaging selection must also inform the concept of 

futility in stroke reperfusion therapy. A futile imaging profile should identify groups of 

patients in whom a therapy offers little to no clinical benefit particularly if an increased risk 
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of harm is greater than any predicted benefit. A futile profile will depend on a number of 

considerations, including time from onset window, anatomic location of existing core 

infarction, type of treatment, and other clinical variables, such as patient age, NIHSS score, 

and patient preferences.22 One commonly used definition of unfavourable outcome, mRS 3–

6, ignores potentially meaningful shifts from severe to moderate disability. The dichotomous 

approach has been modified to classify mRS 4–6 as poor clinical outcome (e.g. 

hemicraniectomy for space occupying cerebral edema). However an ordinal analysis 

approach using the full scale of the mRS to generate numbers needed to treat (NNT) to 

achieve an improvement of at least 1 level on the mRS (perhaps combining 5 and 6 if that 

transition is not deemed meaningful) is an alternative approach that avoids arbitrary 

dichotomies. Similarly, patient-oriented outcomes, such as the NeuroQol or PROMIS, may 

also be considered. Recent small studies have shown that they correlate well with the mRS 

but have greater capacity to discriminate smaller but still meaningful change.23,24 In order to 

address the issue of futility, future research efforts should use pooled analysis of data from 

recent trials as well as large imaging based observational studies that enroll either patients 

without the TRAITs or all comers with a subsequent analysis of outcome by imaging profile 

to derive futility thresholds for current reperfusion therapy.25

Two ongoing trials, PRACTISE (ClinicalTrials.gov Identifier: NCT02360670) and PISTE-2, 

have been designed to better understand imaging selection strategy and the impact on 

treatment, rather than to test a specific treatment. PRACTISE is currently testing CT-based 

advanced imaging selection in IV thrombolysis decisions. PISTE-2 will have two arms, one 

with advanced imaging and one without advanced imaging selection and it is hoped that 

these will provide information on the added value of advanced imaging.

Final infarct volume

Final infarct volume (FIV) can potentially be a useful biomarker in phase II trials to provide 

an early signal of efficacy for a new treatment. The rationale is that FIV is a more direct 

measurement of biological effect of acute treatment compared to clinical outcome at 90 days 

or later which may depend heavily on infarct location and can be affected by unrelated 

pathology. However, it is not clear that FIV is an equivalent or more powerful measure of 

treatment effect than clinical measures of outcome. This is an important research question 

that has been addressed in earlier treatment trials of t-PA (imaging outcomes less powerful 

than clinical outcome measures to detect treatment effect with t-PA) but has yet to be 

investigated in the current endovascular trials. What is clear is that all FIV imaging 

approaches are known to correlate with long-term clinical outcome. However, what matters 

is not the degree of correlation but rather the ability to properly classify patients to predict 

accurately the long-term outcome.

The best approach and timing for measuring FIV requires further investigation. Measuring 

FIV early after stroke treatment (within 24 to 48 hours) has the advantage that the majority 

of patients remain in hospital, but the disadvantages that the lesion volume and signal 

intensity may still be changing or may be confounded by edema and by parenchymal 

hematomas. Early mortality at this time point is uncommon and becomes increasingly 

problematic with later imaging endpoints as it inevitably leads to missing data in a biased 
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manner. Measuring FIV later (30–90 days) has the advantage of a more stable true final 

lesion, but the patient is less likely to be available for follow-up scan, tissue atrophy may 

underestimate the infarct volume, and distinguishing the index infarct from chronic ischemic 

damage may be impossible, or at least subjective. At all time points lesion detection and 

contrast is superior for MRI than CT, making it the preferred modality for final lesion 

volume measurement.

However, CT may be required when MRI is contraindicated or unavailable. The 

recommended MRI sequence to determine the FIV is diffusion-weighted imaging (DWI) at 

24–48 hours.26 Performing DWI earlier than 24 hours risks underestimating lesion volume 

due to temporary post-reperfusion reversal.27 MRI with FLAIR imaging performed at 3–5 

days or just before discharge is an alternative approach that reduces the potential risk of late 

infarct growth occurring in non-reperfused patients whilst minimizing loss to follow-up.28 

However, differentiating the acute lesion from chronic ischemia can be more challenging 

and edema is prominent at this time. The optimal timing for CT follow up (when MRI is not 

available) needs further investigation (i.e., 24–72 hours versus 3–5 days). Research on 

confounding factors including edema, hemorrhagic transformation, contrast staining on CT, 

fogging, etc. are necessary to increase validity of the use of final infarct volume as a 

biomarker. Adjustment to account for the anatomical location and distribution of the final 

infarct relevant to clinical outcome whether it affects eloquent regions or not, would clearly 

be relevant to models aiming to predict functional outcome. However, for assessment of 

biological treatment effect, removal of this potential confound may be a benefit rather than a 

pitfall.

The research priorities for final infarct volume are outlined in Table 6.

Imaging Technology Issues

Imaging selection for acute stroke could benefit from several technological improvements 

that would ensure that the requirement for speed does not result in reduced use of advanced 

imaging which could impair future pathophysiologic insights and treatment advances.

MRI use could become more widespread with recent advances in rapid stroke imaging 

protocols but would require an effective fast safety screening process. The risk associated 

with the administration of gadolinium needs to be addressed, and alternative approaches to 

assess perfusion such as arterial spin labeling need to be further evaluated.

NCCT could benefit from a focus on improving image acquisition quality and workflow that 

would improve core detection, including characterization of ASPECTS score. A focus on 

standardizing optimal acquisition techniques, and the biophysics of image reconstruction 

algorithms, would be helpful, and should consider a wide range of CT technologies 

available, including the emerging availability of CT-equipped mobile stroke ambulances.

PCT would benefit greatly from increased signal contrast to noise through improved 

software and perhaps contrast agent approaches. Faster image reconstruction, transfer and 

processing are critical, not just to produce standardized maps but to rapidly generate 

dynamic angiography. Minimum hardware requirements such as ability to operate at low 
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kilovoltage of 80 kV (or 70kV when available), volumetric coverage, and safety dose-check 

features should be considered.

Rapid technological advances could open new horizons in terms of imaging selection of 

acute stroke patients for treatment.

Conclusion

Recent positive acute stroke endovascular clinical trials have demonstrated the added value 

of neurovascular imaging. The optimal imaging profile for endovascular treatment includes 

large vessel occlusion, smaller core, good collaterals and large penumbra. However, 

equivalent definitions for the imaging profile parameters across modalities are needed, and a 

standardization effort is warranted, potentially leveraging the pooled data resulting from the 

recent positive endovascular trials.
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Table 1

Imaging recommendations for methods and patient selection for clinical reperfusion trials

Baseline imaging markers that favor treatment response of thrombectomy

Treatment-Related Acute Imaging Target (TRAIT) for thrombectomy

• Large artery occlusion

• Small core

• Large core-perfusion mismatch (penumbral marker)

• Good cerebral collaterals

Imaging selection of patients for acute reperfusion trials (not limited to endovascular therapies): Recommendations

• Imaging for defining the Treatment Relevant Acute Imaging Target (TRAIT) is highly recommended for patient selection

• Additional time spent acquiring additional imaging information must be balanced against risk of delay in initiating reperfusion 
therapies

• Pre-randomization vascular imaging should be obtained in acute endovascular trials. This would usually be done by CTA or 
MRA. Catheter angiography is included as a method for patient selection but it is understood that it is not likely the initial 
method for patient selection in a clinical trial

• Vascular, core, mismatch and collateral imaging each have added value for identifying TRAIT and enriching sample toward 
greatest effect size. More than one imaging method and threshold criterion is acceptable for these purposes, but should be 
standardized within a trial

• Particularly in phase II trials with small sample sizes, both vascular and advanced tissue imaging may offer insights into patient 
populations that cannot be obtained from clinical data alone, and are recommended to assist characterization of patient 
populations and improve understanding of experimental therapies

Proposed imaging methods for patient selection

TRAIT Proposed imaging methods

Artery occlusion • CTA

• MRA

• Catheter angiography

Core • ASPECTS on NCCT

• Volume of severely decreased CBV or CBF from PCT

• Volume of acute DWI lesion from MRI

Mismatch • Volume of perfusion lesion (by PCT, Magnetic Resonance Perfusion 
(MRP) or Arterial Spin Labeling (ASL)) to core volume

Cerebral collaterals • CTA source images

• Single- or multiphasic CTA

• Contrast-enhanced MRA

• Catheter angiography

Stroke. Author manuscript; available in PMC 2018 July 25.
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Table 6

Research priorities

Patient selection research priorities

Standardization of core, mismatch and collaterals definitions

• Standardizing acceptable methods and imaging parameters within and across modalities

• Comparability of NCCT ASPECTS, DWI, PCT volume estimates and thresholds, collateral scores on multi-phase or single-phase 
CTA

• Equivalent definitions and thresholds of mismatch across modalities including coregistration methods between core and perfusion 
imaging in order to precisely measure the mismatch volume

• Acceptable variability, i.e. inter-rater reliability, centralized review versus individual site review

• Defining futility thresholds

• Validation of semi-automated methods or fully automated methods of image quantification across vendor platforms, devices and 
modalities

Final infarct volume research priorities

• Recommended as outcome measure at Phase II to assess biological effect of therapy

• Comparison to baseline core volume preferred (volume of change or statistical adjustment)

• Acceptable variability, i.e. inter-rater reliability, centralized review versus individual site review

• Optimal timing and modality/sequence

• Correction for edema, shift due to mass effect, hemorrhagic transformation, atrophy and pre-existing chronic lesions
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